Tuesday, 15 August 2017

Viktat Glidande Medelvärde Excel Prognos


Beräkning av glidande medelvärde i Excel I denna korta handledning lär du dig att snabbt beräkna ett enkelt glidande medelvärde i Excel, vilka funktioner som ska användas för att få glidande medelvärden för de senaste N dagarna, veckorna, månaderna eller åren och hur man lägger till en rörelse genomsnittlig trendlinje till ett Excel-diagram. I ett par senaste artiklar har vi tittat nära på beräkningen av genomsnittet i Excel. Om du har följt vår blogg vet du redan hur man beräknar ett normalt genomsnitt och vilka funktioner som ska användas för att hitta vägt genomsnitt. I dagens handledning diskuteras två grundläggande tekniker för att beräkna glidande medelvärde i Excel. Vad rör sig i genomsnitt Generellt sett kan glidande medelvärde (även kallat rullande medelvärde, löpande medelvärde eller rörligt medelvärde) definieras som en serie av medelvärden för olika delsatser av samma dataset. Det används ofta i statistik, säsongrensade ekonomiska och väderprognoser för att förstå underliggande trender. I aktiehandel är glidande medelvärde en indikator som visar medelvärdet av en säkerhet under en viss tidsperiod. I affärer är det en vanlig praxis att beräkna ett glidande medelvärde av försäljningen under de senaste tre månaderna för att bestämma den senaste trenden. Till exempel kan det glidande genomsnittet av tre månaders temperaturer beräknas genom att ta medeltemperaturen från januari till mars, sedan medeltemperaturen från februari till april, sedan mars till maj och så vidare. Det finns olika typer av rörliga medelvärden som enkla (även känd som aritmetiska), exponentiella, variabla, triangulära och viktade. I den här handledningen ser vi på det mest använda enkla glidande medlet. Beräkning av enkelt glidande medelvärde i Excel Totalt sett finns det två sätt att få ett enkelt glidande medelvärde i Excel - med hjälp av formler och trendlinjealternativ. Följande exempel visar båda teknikerna. Exempel 1. Beräkna glidande medelvärde för en viss tidsperiod Ett enkelt glidande medelvärde kan beräknas på nolltid med funktionen AVERAGE. Antag att du har en lista över genomsnittliga månatliga temperaturer i kolumn B, och du vill hitta ett glidande medelvärde i 3 månader (som visas på bilden ovan). Skriv en vanlig AVERAGE-formel för de första 3 värdena och mata in den i raden som motsvarar 3: e värdet från toppen (cell C4 i det här exemplet) och sedan kopiera formeln ner till andra celler i kolumnen: Du kan fixa kolumn med en absolut referens (som B2) om du vill, men var noga med att använda relativa radreferenser (utan tecknet) så att formeln justeras korrekt för andra celler. Kom ihåg att ett medelvärde beräknas genom att lägga upp värden och sedan dela summan med antalet värden som ska beräknas. Du kan verifiera resultatet med hjälp av SUM-formeln: Exempel 2. Hämta glidmedel för en de senaste N dagarna veckor månader år i en kolumn Anta att du har en lista med data, t. ex. försäljningsuppgifter eller aktiekurser, och du vill veta genomsnittet av de senaste 3 månaderna när som helst. För detta behöver du en formel som beräknar genomsnittsvärdet så snart du anger ett värde för nästa månad. Vilken Excel-funktion kan göra detta Den bra gamla AVERAGE i kombination med OFFSET och COUNT. AVERAGE (OFFSET (första cellen. COUNT (hela intervallet) - N, 0, N, 1)) Där N är numret för de sista dagarna veckor månader år att inkludera i medelvärdet. Inte säker på hur du använder den här glidande medelformeln i dina Excel-kalkylblad Följande exempel gör saker tydligare. Om man antar att värdena i genomsnitt är i kolumn B som börjar i rad 2, skulle formeln vara följande: Och nu kan vi försöka förstå vad den här Excel-glidande medelformeln faktiskt gör. COUNT-funktionen COUNT (B2: B100) räknar hur många värden som redan är angivna i kolumn B. Vi börjar räkna i B2 eftersom rad 1 är kolumnrubriken. OFFSET-funktionen tar cell B2 (det första argumentet) som utgångspunkt och förskjuter räkningen (värdet returneras av COUNT-funktionen) genom att flytta 3 rader upp (-3 i 2: a-argumentet). Som resultat returnerar det summan av värden i ett intervall som består av 3 rader (3 i det 4: e argumentet) och 1 kolumn (1 i det sista argumentet), vilket är de senaste 3 månaderna som vi vill ha. Slutligen skickas returvärdet till AVERAGE-funktionen för att beräkna det glidande medlet. Tips. Om du arbetar med kontinuerligt uppdaterbara arbetsblad där nya rader sannolikt kommer att läggas till i framtiden, se till att du anger ett tillräckligt antal rader i COUNT-funktionen för att tillgodose potentiella nya poster. Det är inte ett problem om du innehåller fler rader än vad som behövs så länge du har den första cellen till höger, kommer COUNT-funktionen att slänga alla tomma rader ändå. Som du säkert märkte innehåller tabellen i det här exemplet data i endast 12 månader, men ändå levereras intervallet B2: B100 till COUNT, bara för att vara på spara sidan :) Exempel 3. Hämta glidande medelvärde för de sista N-värdena i en rad Om du vill beräkna ett glidande medelvärde för de senaste N dagarna, månaderna, år etc. i samma rad kan du justera offsetformeln på följande sätt: Anta att B2 är det första numret i raden och du vill ha att inkludera de sista 3 siffrorna i medelvärdet tar formeln följande form: Skapa ett Excel-glidande medeldiagram Om du redan har skapat ett diagram för dina data, lägger du till en glidande genomsnittlig trendlinje för det diagrammet i några sekunder. För detta ska vi använda Excel Trendline-funktionen och de detaljerade stegen följs nedan. I det här exemplet skapade Ive en 2-D-kolonnediagram (Infoga tab gt Charts-grupp) för våra försäljningsdata: Och nu vill vi visualisera det glidande genomsnittet i 3 månader. I Excel 2010 och Excel 2007 går du till Layout gt Trendline gt More Trendline Options. Tips. Om du inte behöver ange detaljerna, t. ex. det glidande medelintervallet eller namnen, kan du klicka på Design gt Add Chart Element gt Trendline gt Flytta genomsnittet för det omedelbara resultatet. Format Trendline-rutan öppnas på höger sida av ditt arbetsblad i Excel 2013, och motsvarande dialogruta kommer att dyka upp i Excel 2010 och 2007. För att förbättra din chatt kan du växla till fliken Fill amp Line eller Effects på rutan Format Trendline och spela med olika alternativ som linjetyp, färg, bredd, etc. För kraftfull dataanalys kan du lägga till några glidande genomsnittliga trendlinjer med olika tidsintervaller för att se hur trenden utvecklas. Följande skärmdump visar de 2 månaders (gröna) och 3 månaders (tegelröd) rörliga genomsnittliga trendlinjerna: Nåväl, det handlar om att beräkna glidande medelvärde i Excel. Proveringsbladet med de rörliga medelformlerna och trendlinjen är tillgänglig för nedladdning - Flyttande medelvärde kalkylblad. Jag tackar dig för att du läser och ser fram emot att träffa dig nästa vecka. Du kanske också är intresserad av: Ditt exempel 3 ovan (Flytta medelvärdet för de sista N-värdena i rad) fungerade perfekt för mig om hela raden innehåller siffror. Jag gör det här för min golfliga liga där vi använder ett 4 veckors rullande medelvärde. Ibland är golfare frånvarande så istället för ett poäng kommer jag att lägga ABS (text) i cellen. Jag vill ändå att formuläret ska leta efter de senaste 4 poängen och inte räkna ABS antingen i täljaren eller i nämnaren. Hur ändrar jag formeln för att uppnå detta Ja, jag märkte att om cellerna var tomma var beräkningarna felaktiga. I min situation spårar jag över 52 veckor. Även om de senaste 52 veckorna innehöll data var beräkningen felaktig om någon cell före 52 veckorna var blank. Jag försöker skapa en formel för att få det glidande genomsnittet för 3 år, uppskattar om du kan hjälpa till med pls. Datum Produktpris 1012016 A 1,00 1012016 B 5,00 1012016 C 10,00 1022016 A 1,50 1022016 B 6,00 1022016 C 11,00 1032016 A 2,00 1032016 B 15,00 1032016 C 20,00 1042016 A 4,00 1042016 B 20,00 1042016 C 40,00 1052016 A 0,50 1052016 B 3,00 1052016 C 5,00 1062016 A 1,00 1062016 B 5,00 1062016 C 10,00 1072016 A 0,50 1072016 B 4,00 1072016 C 20,00 Hej, jag är imponerad av den stora kunskapen och den korta och effektiva instruktionen du tillhandahåller. Jag har också en fråga som jag hoppas att du kan låna din talang med en lösning också. Jag har en kolumn A på 50 (veckovis) intervalldatum. Jag har en kolumn B bredvid den med planerad produktion i genomsnitt per vecka för att slutföra målet på 700 widgets (70050). I nästa kolumn summerar jag mina veckovisa inkrement hittills (100 till exempel) och beräknar min återstående antal prognos avg per återstående vecka (ex 700-10030). Jag skulle vilja kopiera varje vecka ett diagram som börjar med den aktuella veckan (inte datumet för start x-axeln i diagrammet), med summan (100) så att min utgångspunkt är den aktuella veckan plus resten avgweek (20), och avsluta den linjära grafen vid slutet av vecka 30 och y-punkten på 700. Variablerna för att identifiera rätt celldatum i kolumn A och slutar vid mål 700 med en automatisk uppdatering från dagens datum, förvirrar mig. Kan du hjälpa dig med en formel (jag har försökt IF logik med idag och bara inte löser det.) Tack Vänligen hjälp med den korrekta formeln för att beräkna summan av timmar som har angetts under en rörlig 7-dagarsperiod. Till exempel. Jag behöver veta hur mycket övertid som arbetas av en individ under en rullande 7-dagarsperiod beräknad från årets början till slutet av året. Den totala antalet arbetade timmar måste uppdateras under de 7 rullande dagarna då jag går in i övertidstimmen dagligen. Tack. Finns det ett sätt att få summan av ett nummer under de senaste 6 månaderna? Jag vill kunna beräkna summa för de senaste 6 månaderna varje dag. Så illa behöver det uppdateras varje dag. Jag har ett excel-ark med kolumner varje dag förra året och kommer så småningom att lägga till mer varje år. någon hjälp skulle uppskattas, eftersom jag är stumped Hej, jag har ett liknande behov. Jag måste skapa en rapport som visar nya klientbesök, totala kundbesök och annan information. Alla dessa fält uppdateras dagligen i ett kalkylblad, jag behöver dra uppgifterna för de föregående 3 månaderna uppdelade per månad, 3 veckor i veckor och sista 60 dagar. Finns det en VLOOKUP eller formel eller något jag kan göra som länkar till arket som uppdateras dagligen, så att min rapport kan uppdateras dailyWow att beräkna viktiga rörliga medelvärden i Excel med hjälp av exponentiell utjämning Excel-dataanalys för dummies, 2: a upplagan Exponentiell utjämning i Excel beräknar glidande medelvärdet. Exponentiell utjämning väger emellertid värdena som ingår i de glidande medelberäkningarna så att de senaste värdena har större effekt på medelberäkningen och gamla värden har en mindre effekt. Denna viktning åstadkommes genom en utjämningskonstant. För att illustrera hur verktyget för exponentiell utjämning fungerar, antar att du8217re ser igen på den genomsnittliga dagtemperaturinformationen. För att beräkna vägda glidmedel med hjälp av exponentiell utjämning, gör följande steg: För att beräkna ett exponentiellt jämnt glidande medelvärde, klicka först på kommandoknappen Data tab8217s dataanalys. När Excel visar dialogrutan Dataanalys väljer du alternativet Exponentiell utjämning från listan och klickar sedan på OK. Excel visar dialogrutan Exponentiell utjämning. Identifiera data. För att identifiera de data som du vill beräkna ett exponentiellt jämn glidande medelvärde för, klickar du i textrutan Inmatningsområde. Identifiera sedan ingångsintervallet, antingen genom att skriva in en arbetsbladets intervalladress eller genom att välja arbetsbladets intervall. Om ditt inmatningsområde innehåller en textetikett för att identifiera eller beskriva dina data markerar du kryssrutan Etiketter. Ge utjämningskonstanten. Ange utjämningskonstantvärdet i textrutan Dämpningsfaktor. Excel-hjälpfilen föreslår att du använder en utjämningskonstant på mellan 0,2 och 0,3. Förmodligen, om du använder det här verktyget, har du egna idéer om vad den korrekta utjämningskonstanten är. (Om you8217re clueless om utjämningskonstanten, kanske du shouldn8217t använda det här verktyget.) Berätta Excel var du placerar de exponentiellt jämnaste glidande genomsnittliga data. Använd textrutan Utmatningsområde för att identifiera det arbetsarksintervall som du vill placera den rörliga genomsnittsdata för. I exemplet på arbetsbladet placerar du exempelvis den glidande genomsnittliga data i arbetsarkets intervall B2: B10. (Valfritt) Diagram Exponentially smoothed data. För att kartlägga exponentiellt jämna data, markera kryssrutan Diagramutmatning. (Valfritt) Anger att du vill beräkna standard felinformation. För att beräkna standardfel markerar du kryssrutan Standard fel. Excel placerar standardfelvärden bredvid de exponentiellt släta glidande medelvärdena. När du är klar med att ange vilken glidande medelinformation du vill ha beräknad och var du vill placera den, klicka på OK. Excel beräknar glidande genomsnittlig information. Vägt rörligt medelvärde I exempel 1 av Simple Moving Average Forecast. vikterna som gavs till de föregående tre värdena var alla lika. Vi överväger nu fallet där dessa vikter kan vara olika. Denna typ av prognos kallas vägt glidande medelvärde. Här tilldelar vi vikter w 1. , w m. var w 1 w m 1, och definiera de prognostiserade värdena enligt följande Exempel 1. Redo exempel 1 av Simple Moving Average Forecast där vi antar att de senaste observationerna vägs mer än äldre observationer, med hjälp av vikterna w 1, 6, w 2, 3 och w 3 .1 (som visas i intervall G4: G6 i figur 1 ). Figur 1 Viktiga rörliga medelvärden Formlerna i Figur 1 är desamma som de i Figur 1 i Simple Moving Average Forecast. förutom de prognostiserade y-värdena i kolumn C. Exempelvis formeln i cell C7 är nu SUMPRODUCT (B4: B6, G4: G6). Prognosen för nästa värde i tidsserierna är nu 81,3 (cell C19), genom att använda formeln SUMPRODUCT (B16: B18, G4: G6). Real Statistics Data Analysis Tool. Excel tillhandahåller inte ett viktat medelvärde för dataanalysverktyg. Istället kan du använda dataanalysverktyget Real Data Weighted Moving Averages. För att använda detta verktyg för exempel 1, tryck Ctr-m. välj alternativet Time Series från huvudmenyn och sedan alternativet Grundläggande prognosmetoder från dialogrutan som visas. Fyll i dialogrutan som visas som visas i Figur 5 i Simple Moving Average Forecast. men den här gången väljer du alternativet Viktigt rörande medelvärde och fyller in vikterområdet med G4: G6 (observera att ingen kolumnrubrik ingår i vikten). Ingen av parametervärdena används (i huvudsak av Lags blir antalet rader i vikten och årstider och prognoser kommer som standard till 1). Utsignalen kommer att se ut som utgången i Figur 2 i Simple Moving Average Forecast. förutom att vikterna kommer att användas vid beräkning av prognosvärdena. Exempel 2 Använd Solver för att beräkna de vikter som producerar det lägsta medelkvadratfelet MSE. Med hjälp av formlerna i Figur 1 väljer du Data gt AnalysisSolver och fyller i dialogrutan som visas i Figur 2. Figur 2 Solver dialogrutan Observera att vi måste begränsa summan av vikterna som 1, vilket vi gör genom att klicka på Lägg till knapp. Detta ger dialogrutan Add Constraint, som vi fyller i som visas i Figur 3 och sedan på OK-knappen. Figur 3 Lägg till begränsningsdialogrutan Vi klickar sedan på Solve-knappen (på figur 2) som ändrar data i Figur 1 som visas i Figur 4. Figur 4 Solveroptimering Såsom framgår av Figur 4 ändrar Solver vikterna till 0 . 223757 och .776243 för att minimera värdet av MSE. Som du kan se är det minimerade värdet 184 184 (cell E21 i figur 4) åtminstone mindre än MSE-värdet 191.366 i cell E21 i figur 2). För att låsa in i dessa vikter måste du klicka på OK-knappen i dialogrutan Solverresultat som visas i Figur 4.Vågat rörande medelprognos och MAD i EXCEL Problemet säger att chefen för Carpet City-utloppet måste göra en exakt prognos av Efterfrågan på Soft Shag matta (den största säljaren). Om chefen inte beställer tillräckligt mycket matta från mattan, kommer kunderna att köpa sina matta från en av Carpet City många konkurrenter. Chefen har samlat in följande efterfrågningsdata under de senaste åtta månaderna Månadens efterfrågan på mjuk shag Matta 1 000 m 1 8 2 12 3 7 4 9 5 15 6 11 7 10 8 12 Beräkna en 3 månaders glidande medelprognos för månad 4 till 9 Beräkna en vägd 3 månaders glidande medelprognos för månaderna 4 till 9. Tilldela vikter av .53. 33 och .12 till månaden i följd, från och med den senaste månaden. Jämför de två prognoserna med hjälp av MAD, vilken prognos tycks vara mer exakt. Lösningsförhandsvisning Vänligen se bilagan Solution. xlsx för arbets - och. Lösningsöversikt Ett 3 månaders rörligt medelprognos och ett annat 3 månadsviktat rörligt medelprognos, med olika utjämningsvägningsfaktorer, har utförts i Excel. Prognosfel (MAD) har beräknats och de två prognoserna har jämförts med dessa MAD-värden. Lägg till lösning i kundvagnen Ta bort från varukorgen

No comments:

Post a Comment